
C-GEP: Adaptive Network Management with

Reconfigurable Hardware

Péter Orosz, Tamás Tóthfalusi

Faculty of Informatics

University of Debrecen

Debrecen, Hungary

email: oroszp@unideb.hu

Pál Varga

Department of Telecommunications and Media Informatics

Budapest University of Technology and Economics

Budapest, Hungary

email: pvarga@tmit.bme.hu

Abstract—Carrying out network monitoring tasks remains a

continuous challenge, partially because the line rate reaches and

exceeds 100 Gbit/s. Besides the increasing data rate, the advent of

programmable networks necessitates efficient solutions for

supporting packet processing tasks in an adaptive way.

Introducing a modification of a protocol or any new protocol in

such a flexible infrastructure implies a novel management

approach incorporating network monitoring equipment with

reconfigurable architecture. The requirement for high

throughput and high level of reconfiguration together put Field

Programmable Gate Array (FPGA) technology into the focus of

high performance networking.

In this paper, we introduce a programmable, multi-purpose

network platform called C-GEP that is based on a reconfigurable

architecture. The system consists of two main building blocks: a

high performance FPGA-based custom hardware platform and a

firmware dedicated for network monitoring. We present the

architecture focusing on the system-level integration of specific

packet processors. The integration of processing building blocks

into one high performance system has great challenges. These

are primarily related to specific, limiting factors of system

resources – which we discuss also in this paper.

Keywords—network management; network monitoring;

100 Gbit/s Ethernet; traffic analysis; reconfigurable hardware;

Field Programmable Gate Array

I. INTRODUCTION

Core network infrastructures are one of the first adopters of
high performance transmission technologies. The primary
factor that drives the evolution of these critical infrastructures
is the emergence of new services requiring increased
bandwidth. These days, considering the global Internet traffic
mix, real time media services (e.g., VoD, IPTV, OTT video,
video conferencing, etc) are the top consumers of network
capacity. Due to the real time requirement of these services,
there is a raised expectation about network performance. It is
not just the capacity, but other transmission properties that
should be kept under tight control, i.e., loss, delay and delay
variation. In order to provide an uninterrupted, high quality
service, providers apply a wide scale of monitoring tools and
metrics to measure the network performance. There are many
critical network management tasks that require packet level
network monitoring: detecting and localizing network faults
and bottlenecks, measuring quality of service (QoS) metrics

(packet delay, loss, jitter and reordering), performance analysis,
misbehavior detection, etc. To assess quality of service (QoS)
level for real time applications, a continuous packet-level flow
monitoring is a common practice. In order to control the
transmission properties throughout the network for an
increasing scale of time sensitive applications, distributed
monitoring of a predefined set of network links and nodes
became an essential element of professional network
management.

In this paper, we introduce a high performance, lossless
network monitoring system called C-GEP that is based on a
reconfigurable architecture. The system consists of two main
building blocks: a high performance Field Programmable Gate
Array (FPGA)-based custom hardware platform and a
firmware dedicated for network monitoring. The
reconfigurable property of the FPGA chip enables to turn the
C-GEP hardware platform into a high performance networking
device, e.g., network monitor, switch, router, firewall or
intrusion detection system. Nevertheless, as a network
monitoring system, it supports distributed and lossless packet
level monitoring of Ethernet links up to 100 Gbit/s.

Distributed monitoring implies multiple synchronized
instances of the C-GEP device that we call probes in the
context of network measurement. Reconfiguration of any part
of a hardware-based network monitor got more focus by the
emergence of Software Defined Network (SDN) infrastructures
with the primary design principle of network programmability.
Introducing a modification of a protocol or any new protocol in
such a flexible infrastructure is a vendor independent task. This
raises the necessity of an adaptive network management
approach that features network monitoring devices
incorporating reconfigurable hardware elements. The
requirement for high throughput and high level of
reconfiguration together ended up in the design and
implementation of the presented system.

The rest of the paper is organized as follows. Section II
reviews the previous works related to high performance
network monitoring, including research results and hardware
accelerated implementations. In Section III, we introduce the
monitoring system detailing its architecture, functions and
performance parameters. Section IV gives an overview of the
challenges related to system level integration of the processing
stages, i.e., lossless packet capture, high precision clock

synchronization, packet parsing and classification, and
reduction of measurement data. Finally, we conclude the
results and experiences in Section V.

II. RELATED WORK

There is only a limited number of publications that involve
system level presentation of high-performance network
monitor architectures based on reconfigurable hardware.
Typically these are about packet processing tasks (i.e., packet
parsing, packet classification and payload inspection) that are
part of some specific networking equipment (e.g., network
monitor, firewall, IDS, etc.) form their own specific research
fields, with very small system level integration effort.
Nevertheless, the system level integration of specific packet
processors introduces new challenges. These are primarily
related to system resources that often set up constraints to the
integration of processing building blocks into one high
performance system. Handling the increasing data rate of the
evolved transmission technologies emphasizes the requirement
for an integrated approach of hardware-based packet
processing. In this section, we review major contributions of
the mentioned research fields and show some examples of the
integration efforts related to reconfigurable architectures and
network measurement.

Michael Attig et al. [1] introduced a high-level parsing
description language. Source codes can be compiled to a
Virtex-7 FPGA device to perform packet parsing at 400 Gbit/s
data rate. Viktor Pus et al. [2] proposed a parser that is
manually optimized for latency and chip area, operating at
more than 100 Gbit/s data rate. Their introduced parsing engine
provides the classic 5-tuple protocol metadata for each
processed packet. Gordon Brebner et al. [3] proposed an
object-oriented language for the compilation of high
throughput packet processing engines. The compiler generates
a pipeline architecture, which supports operation at 100 Gbit/s
data rate. Thilan Ganegedara et al. [4] presented a 400 Gbit/s
throughput capable architecture for a 5-tuple based
classification module. The work uses four instances of a
100 Gbit/s engine, where each engine is also based on pipeline
architecture. Weirong Jiang et al. [5] introduced a 12-tuple
based classifier solution. The FPGA implementation is able to
operate at 40 Gbit/s line rate combined with a 1k-element rule
set. The proposed system is based on a multi-pipeline
architecture. Jeffrey Fong et al. [6] proposed a one-chip
solution for a complex classifier system, namely ParaSplit. The
implementation can operate even at 1 Tbit/s throughput using
multiple module instances. NetFPGA [7] is an open platform
for prototyping line-rate packet processing systems. The
NetFPGA-10G board is based on a Virtex-5 device, which
features four 10 Gbit/s interfaces. Since the platform is
primarily dedicated for research purposes, it provides base for
many publications. The main NetFPGA-10G projects
implement switch [8] functions operating at 10 Gbit/s data rate.
These solutions are based on Microblaze to perform header
field extraction and packet modification tasks. Microblaze [9]
is an FPGA-based, 32-bit RISC architecture soft-processor.
NetFPGA is an efficient hardware platform for monitoring
systems. However, the presented works operate at 1 or 10
Gbit/s. Buffer monitoring system [10] is designed to monitor
the utilization of packet buffers in switches and routers. The

open source work monitors the packet arrival/departure/drop
events on the incoming queues, and sends it to a software
module. Alfio Lambardo et al. [11] developed a traffic monitor
system to measure the amount and type of packets carried over
a network. The incoming traffic is routed to the CPU, and the
type of packets is determined based on the IPv4 header
protocol field. Gianni Antichi et al. [12] designed a passive
monitoring system, providing accurate timestamping
(nanosecond accuracy). The system contains a 5-tuple based
classification engine, where the fitted packets are routed to the
CPU for further processing. Beyond the presented publications,
major vendors of network measurement equipment also
involve the FPGA technology to implement hardware
accelerated packet-level monitoring. For 100 Gbit/s networks,
Endace designed a system called Network Visibility Headend
[13] that de-multiplexes 100 Gbit/s ingress traffic to multiple
10 Gbit/s egress interfaces. However, their solution requires
multiple 10 Gbit/s monitor probes to accept distributed packets
and perform packet parsing and classification – meaning that
the 100 Gbit/s device merely serves as a 100/10 de-multiplexer.

III. ARCHITECTURE OF THE C-GEP MONITORING SYSTEM

C-GEP is a multi-purpose, programmable, FPGA-based
Gigabit Ethernet Platform – the successor of C-Board [14]. Its
main purpose is to provide means for handling 1, 10, 40 and
100 Gbit/s Ethernet traffic in a flexible manner. The
architecture allows various networking applications for
implementation – from SDN devices to media gateways; from
traffic generators to DPI (Deep Packet Inspection) support. The
first prototypes were programmed to work as monitoring
probes for traffic measurement. The C-GEP functions well in
this environment, due to its capabilities for lossless packet
capture (even at 100 Gbit/s); ns-precise timestamping (when
equipped with a built-in atomic clock); and packet filtering /
forwarding based on complex rules (see Fig. 1).

Fig. 1. Logical layout of the C-GEP monitoring system

A. Implementing 100 Gbit/s Physical Layer and Media Access

Control in a reconfigurable architecture

Based on a reconfigurable architecture such as an FPGA, we
have the possibility to design and implement even the lowest
level packet processing tasks. In such a way, we can provide
custom functions and I/Os to retrieve low-level, packet-related

information to determine arrival time on wire, for example.
Accordingly, we implemented the Physical Coding Sublayer
(PCS) and the Media Access Control (MAC) inside the FPGA
chip, which are the first stages within the internal data path.
Nevertheless, there are many FPGA-based Intellectual Property
(IP) cores on the market implementing 100 Gbit/s Ethernet
MAC. Such IP-cores (considering today’s price level), are very
expensive and therefore contribute significantly to the price of
the monitoring device.

The C-GEP board connects to the 100 Gbit/s core network
using a CFP (C Form-factor Pluggable) transceiver. The CFP
module is directly wired to the pins of the FPGA chip on the
board. Within the Virtex-6 chip the high-throughput capable
lines are handled with GTH I/O interfaces. The MAC module
operates in non-segmented mode, using 512-bit wide data path
combined with 312.5 MHz core frequency. In this operation
mode, each start byte of the outgoing data is synchronized to
the first byte of the 512-bit word. The segmented operation
mode, as alternative for a lower frequency design, enables a
packet to start in every 8-byte boundary of the 512-bit word.
Since the subsequent processing phases operate on predefined
packet header fields, segmented mode requires complex
synchronization logic during metadata propagation. On the
other hand,, the internal design of a non-segmented MAC
module occupies more buffer logic than the segmented mode.

B. Distributed Monitoring: Synchronizing Probes’ Clocks

In traffic analysis, high resolution and high precision
timestamping is a basic requirement to evaluate QoS metrics
(such as one way and round trip delays and delay variation in a
network path) and to precisely detect or reconstruct network
events (i.e., request-response pairs).

 All of these management tasks get extreme importance
when evaluating network performance against Service Level
Agreements (SLAs). Another example of high synchronization
accuracy is monitoring multiple links of a router. This is the
case of the performance evaluation of a routing device. In this
arrangement, each link is measured by a dedicated monitoring
probe. A packet seen by one probe may be forwarded to an
outgoing interface of the router that is monitored by another
probe. Typical order of the forwarding delay in today’s core
routers is in the 0.5-5 microseconds range. This low level of
delay demands for highly accurate clock synchronization
between monitoring probes.

Monitoring systems should be prepared for the worst case
scenario, and therefore internal clocks have to be synchronized
so that the order of message pairs can be clearly determined.
There are several solutions for this purpose (e.g., Network
Time Protocol - NTP, Precision Time Protocol - PTP and
Global Positioning System - GPS), providing different levels of
accuracy. Since NTP is typically implemented as a software
solution, it is not capable to provide synchronization accuracy
better that 1 ms in LAN environment, and 100-1000 ms in

longer distances. Accordingly, the software- and network-
related constraints do not enable its application in high
performance measurement systems. In contrast to NTP, PTP
has significantly higher accuracy, but requires hardware
support in each device throughout the network path.
Monitoring systems involve both GPS and PTP as an enabling
technology to support high accuracy clock synchronization
throughout the distributed system.

Considering network monitoring, the properties and the
performance of a timestamping engine is determined by the
maximum rate of packet arrivals and the type of measurements.
In the presented monitoring system we implemented GPS- and
PTP-based clock synchronization supported by a high precision
on-board atomic clock device. The C-GEP system is able to
synchronize its high precision local clock with a PTPv1 (IEEE
1588-2002 compliant [15]) master device. The monitor probe
operates as slave in the PTPv1 communication and uses one of
its Gigabit Ethernet interfaces for this purpose. Clock
synchronization mechanism was tested through software as
well as hardware solutions. The software solution was a free
PTPv1 Master implementation, namely ptpd [16]. In addition,
our research group implemented a hardware solution for the
PTPv1 tests, using a NetFPGA-1G board [7] and a chip scale
atomic clock [17].

C. Parsing Packet Headers

The second stage within FPGA’s internal data path is the
packet parser module, which maintains the 512-bit wide path in
each of its sub-modules. To achieve the target throughput, the
parser engine has to operate at a core frequency of 312.5 MHz.
Since the architecture of the FPGA devices is designed to
support a wide range of processing tasks, its physical resources
may set up limitations for certain type of applications. One of
these drawbacks is the maximum operating frequency for the
connection path, which is typically not higher than 400 MHz,
even in a high-end device. This limit is against a high-
throughput design goal, and requires target specific design
perspective.

The operation of the parser engine is based on a parse
graph, which is a combination of predefined header structures.
The parse graph defines the possible state transitions during the
parsing process (see Fig. 3). According to the scalability of the
parse graph, the engine can be reconfigured at compilation or
run time. Publications related to high performance packet
parsing [1][2][3] commonly propose solutions based on
reconfigurable parse graphs, in which the identifiable protocol-
structure is reconfigurable through offline algorithms using a
specified object oriented language. These header definition
languages are designed for handling protocol structures with
high-level programming tools. Reconfiguring the parse graph
during online operation requires a synchronized update of the
filter rules inside the classification engine. As an example, let’s
assume that IPv4 header extraction is replaced with IPv6
header recognition.

Fig. 2. Example for the header structure of a supported multi-encapsulated packet

After the end of the upgrade process, the parser engine
provides IPv6 address fields instead of IPv4 ones. This
operation turns the parser and classifier engines into an
inconsistent state relative to each other, since the
classification engine is still prepared for IPv4 filtering. To
avoid packet loss due to the inconsistent processing state, the
monitored links have to be redirected to a bypass route
during the reconfiguration process. This solution may result
in a false analysis result since unrelated traffic can be
processed as part of a monitored flow, for example. In
addition, the suddenly increased amount of data has to be
stored and processed, otherwise packet loss occurs. To avoid
the inconsistency, our packet parser graph is reconfigurable
in compilation time only.

Fig. 3. Packet parser graph

Considering today’s networking trends, evolving network
services result in the appearance of new protocols or protocol
fields at an increasing frequency. To cover the spectrum of
network protocols present in core IP networks, our parser
engine enables to identify multi-encapsulated packets
beyond decoding the classical 5-tuple, i.e., IP address pair,
port pair and transport protocol. Therefore, the engine
extracts 14-tuple (protocol fields), which are: outer VLAN
tag, inner VLAN tag (QinQ), MPLS tags (two levels),
EoMPLS, VLAN tag in EoMPLS, IPv4 header, UDP or TCP
header (see Fig. 2). The dynamic length of the IPv4 header
using optional fields is also handled during the parsing
process. The decoded protocol metadata are synchronized to
the original packet, and buffered for further processing.

For assessing QoS of a network service, lossless packet
processing is an essential requirement. Since the 100 Gbit/s
MAC module operates in non-segmented mode, every 512-
bit word (and therefore every clock cycle) can contain a new,
minimum-sized packet. This property dictates a very strict
timing constraint for the parser engine, which has to decode
the header structure within one clock cycle. Using buffers or
storage memory is not a viable option at this core frequency,
because the intra-chip routing to the memory elements is
often a timing critical point. In addition, memory modules
are just temporal solutions, since transient traffic – such as a
burst of minimum-sized packets – can cause overflow and
packet drop. According to the chip limitations and the target
tasks, the processing steps of the parsing engine are designed
and integrated into a pipelined architecture. Each pipeline
stage has a well-defined task during packet parsing to handle

the identification and extraction of an embedded header.
Since the core frequency is critical, one stage must contain
simple operations on a predefined header. The pipeline
structure in the C-GEP is also fixed at compilation time. To
manage and follow the start of the headers, simple indices
are calculated and propagated through the processing phases.
At the end of the pipeline, a read stage protects the parse
engine against overflow.

The output (i.e., the pre-processed traffic) of a
monitoring system is always stored in a database for post-
processing and statistics calculation. To decrease the amount
of stored data, cutting the packet payload is a common
solution. Since the protocol embedding is a complex and
unknown property of the incoming packets, static cutting
(static snap length) is widely used in practice. This method
ignores private user data, which is out of the static window.
However, it can happen, that the private data remains visible,
or the important header information are not stored because of
the static cutting. An advantage of a complex parse engine is
the knowledge of the header structure, which is an important
and required factor for dynamic snap length calculation. This
property of the parser process ensures that all header
information can be stored without private user data.

D. Packet Filtering and Classification

Packet classification is one of the main processes in a
monitoring system, which is the third phase of the internal
processing path. It expects input metadata about the
incoming packet and about the base of the classification. The
former is the extracted header field-set, coming from the
packet parsing stage. The number and size of these header
fields determine the complexity of the lookup engine. The
latter is a field-set, namely rule, in which the highest priority
match gives the result of the classification process. Rules are
based on the extracted header information, namely tuples.
The classical solutions are 5-tuple methods.

Convergence of mobile networks to IP, and the
emergence of complex, more than 5-tuple classification get
importance and became active research areas lately. To
perform fine grained filtering, C-GEP operates with a 14-
tuple classification engine. The classifier module of the C-
GEP system continues the packet parser engine’s data flow,
including the data path width and frequency requirements.

E. Transparent Reconfiguration of Filtering Rules

One of the main design drives of a packet classification
engine is on-the-fly, transparent reconfiguration without
temporal redirection of the packet flow to a bypass path.
Acquired packets are filtered based on the old rule until the
update mechanism overwrites it.. The architecture of the
filter module relies on the same principle as the parser
engine, namely the pipelining. This feature implies a stage-
by-stage update mechanism and a dedicated path for the
configuration data. The filter process is synchronized with
the update algorithm to perform real-time processing.

To assist the update mechanism, the system includes a
graphical rule-generation software. Figure 4 shows this
program that generates a configuration file, which contains
the binary form of the rules in a special header format.

Fig. 4. Configuration file generator

The binary files can be reopened or exported to block
RAM initialization files. This mechanism was useful during
the validation of the prototypes. After generating the
configuration file, new rules can be uploaded to the FPGA
chip. The embedded Linux OS of the C-GEP platform
contains functions for the rule update mechanism, which are
written in C. The update functions use PCIe interface to
reconfigure the classifier engine. The PCIe module at the
FPGA side operates at 125 MHz core frequency, in contrast
with the filter module. The clock domain crossing is solved
by FIFOs to collect and synchronize new rules.

The classifier engine operates on the protocol metadata
extracted by the parser module. Each rule contains 14
elementary conditions, which conditions can be concatenated
using AND or NOT AND operations.

With the presented structure of the classifier engine (see
Fig. 5), the C-GEP monitor platform is able to operate with
16 hardware-based filter rules. The number of rules in this
architecture is limited because of the FPGA chip resource
constraints. To increase the number of filtering rules, we
designed and implemented a new block RAM based filtering
solution (see Fig. 6). As a new approach, we choose a
previous work from the decomposition-based classification
engines, as the base of our filtering function [18]. Field-split
bit vector (FSBV) is a parallel, lookup-based filtering
method, using subfields from the original header
information. Since it operates only at 167 MHz core
frequency, it does not meet our frequency constraints. To
enhance the FSBV algorithm, we optimized it to support
312.5 MHz operational frequency. Our solution is verified in
simulation tests; the integration and firmware generation
phase was not yet performed. Nevertheless, the optimized
classifier engine is able to operate on n x 72 rules, similar to
the FSBV solution. The extracted header information,
coming from the parser engine, is split to 9-bit addresses for
the block RAMs. Each address represents a 72-bit value, in
which each bit belongs to one rule. If the 9-bit part of the
actual rule fits on the 9-bit part of the extracted header
information, it is represented by 1 at the given index
otherwise the bit is set to 0. Each block RAM is addressed in
parallel, where partial results are AND-ed for the final result.
The drawback of this architecture is the lack of real-time
reconfiguration. The rule fitting is an invalid operation
during a writing clock cycle.

F. System Integration: One Chip, One System

The integration phase of the full system required hard
cooperation between the presented processing engines,
because of several implementation features and FPGA
resource limitations.

Fig. 5. Pipeline-based packet classifier

Fig. 6. Block RAM-based packet classifier

While packet parsing and packet classification are active
research fields, both with a large number of contributions,
there are only a few publications discussing the challenges of
integrating these functionalities in a high performance
monitoring system.

The size of the MAC module was a constraining factor of
the system integration. The prototype board of C-GEP
designed with an XC6VHX255T FPGA chip, in which the
100 Gbit/s Ethernet MAC occupies 30% of the logical
routes. Adding the parser engine to the data path, the design
occupies about 45% of the chip. Adding the basic Gigabit
Media Independent (GMI) interface and PCIe modules, but
excluding the classification engine, the half of the chip was
allocated.

Considering physical resources, there is a trade-off
between the size of the filter rule set and the complexity of
the rules. In the C-GEP platform, we tried to balance
between these two properties to cover common
requirements. Besides line-rate classification, real-time rule
update was another challenge of the implementation. To omit
the bypass route for the captured packets during the

reconfiguring phase, the classification engine was extended
with an additional update path. This path occupies extra logic
and results in a lower number of filter rules.

Beyond the integration of the basic processing modules
(i.e., 100 Gbits/s Ethernet PCS/MAC, packet parser, packet
classifier), another engineering task was to properly handle
different clock domains within the system. There are four
clock domains (e.g., 1 Gbit/s Ethernet, PCIe, clock
synchronization and 100 Gbit/s packet processing) in the
monitor architecture, requiring synchronization and clock
domain crossing mechanisms.

A monitoring probe provides outgoing traffic flows based
on specified criteria. Typically, the packets are routed to
predefined output interfaces, where the routing method can
be based on (i) matched filter rule, (ii) flow (conversation
based routing), or (iii) per-packet round robin.

If the operator would like to monitor a sub-network, a
filter rule based monitoring can be an effective solution. The
flow-based monitoring is suitable for QoS measurement or
DPI. Round robin – or balanced packet distribution – is the
third routing method, which is appropriate for balancing the
captured traffic between agents on per-packet basis. Lossless
operation is not just a requirement for incoming packets, but
also for outgoing traffic. TCP is a well-known solution for
connection-oriented operation, which provides lossless
packet transfer between two network nodes. However, TCP
requires a significantly big chip area in a hardware
implementation, and each interface instance requires a
dedicated instance of the TCP module. To handle the lossless
packet transmission with low hardware resources, our
research group designed an UDP-based transport protocol,
namely Rate Control Transport Protocol (RCTP) [19]. The
advantage of this protocol lies in a flow control mechanism,
which works at the recipient side, and the sender is based on
simple logic to care about the FPGA resource limitation.

IV. CONCLUSION

While the evolution of network infrastructures is driven by
two factors: the increasing amount of user data and the
emergence of new services, there is a novel paradigm,
namely the concept of programmable networks that shapes
and redefines the architecture of IP-based network
infrastructures. All of the mentioned changes together
necessitate a new adaptive way of network management. To
give performance as well as flexibility, reconfigurable
hardware may appear as the central building block of a high
performance network management system. In this paper, we
introduced a multi-purpose, programmable, FPGA-based
hardware platform that supports the mentioned new concept
in many ways. Its main purpose is to provide means for
handling 1, 10, 40 and 100 Gbit/s Ethernet traffic in a
flexible manner. As Proof-of-Concept, we showed an FPGA
firmware operating at 100 Gbit/s line rate and involving
hardware-accelerated packet capturing, parsing,
classification and clock synchronization engines. In this
paper, we investigate the challenges of the integration of
packet processing engines into one reconfigurable integrated
circuit, and focus on major design and implementation trade-
offs related to chip-level physical resources.

ACKNOWLEDGMENT

We would like to thank to all of our colleagues and
students who contributed to the success of our project: Ákos
Máté, Péter Mércse, Zoltán Nagy, István Pógár, Tamás
Skopkó, Máté Varga, Péter Varga, János Végh from the
University of Debrecen, György Horváth, Gábor Kródi,
László Kovács and the rest of the AITIA team. This research
was partially funded by the national project “C-GEP”, GOP-
1.1.1-11-2012-0031, in Hungary.

REFERENCES

[1] M. Attig, G. Brebner, “400 Gb/s Programmable Packet Parsing on a
Single FPGA”, in Proc. ACM/IEEE Seventh Symposium on
Architectures for Networking and Communications Systems, 2011,
pp. 12-23.

[2] V. Pus, L. Kekely, J. Korenek, “Low-Latency Modular Packet Header
Parser for FPGA”, in Proc. ACM/IEEE Symposium on Architectures
for Networking and Communications Systems, 2012, Austin, Texas,
USA

[3] G. Brebner, W. Jiang, “High-Speed Packet Processing using
Reconfigurable Computing”, IEEE Micro vol. 34, 2014, pp. 8-18.

[4] T. Ganegedara, V. K. Prasanna, “StrideBV: Single Chip 400G+
Packet Classification”, in Proc. IEEE 13th International Conference
on High Performance Switching and Routing, 2012, Belgrade, pp. 1-
6.

[5] W. Jiang, V. K. Prasanna, “Scalable Packet Classification on FPGA”,
in Proc. IEEE Transactions on Very Large Scale Integration Systems,
2012, pp. 1668-1680.

[6] J. Fong, X. Wang, Y. Qi, J. Li, W. Jiang, “ParaSplit: A Scalable
Architecture on FPGA for Terabit Packet Classification”, in Proc.
IEEE 20th Annual Symposium on High-Performance Interconnects,
2012, Santa Clara, CA, pp. 1-8.

[7] NetFPGA project, [Online]. Available: http://www.netfpga.org

[8] OpenFlow-Switch project, [Online]. Available: https://github.com/
NetFPGA/NetFPGA-public/wiki/NetFPGA-10G-OpenFlow-Switch

[9] Xilinx Microblaze, [Online]. Available: http://www.xilinx.com/
tools/microblaze.htm

[10] Buffer Monitoring System project, [Online]. Available:
https://github.com/NetFPGA/netfpga/wiki/BufferMonitoringSystem

[11] Traffic Monitor project, [Online]. Available: https://github.com/
NetFPGA/netfpga/wiki/TrafficMonitor

[12] Monitoring System project, [Online]. Available: https://github.com/
NetFPGA/netfpga/wiki/MonitoringSystem

[13] Emulex EndaceAccess Network Visibility Headend, [Online].
Available: http://www.emulex.com/products/network-visibility-
products-and-services/10040gb-network-visibility-headends/features/

[14] I. Moldovan, P. Varga, “A Flexible Switch-Router with
Reconfigurable Forwarding and Linux-based Control Element”, in
Proc. IEEE 10th International Symposium on Electronics and
Telecommunications (ISETC), 2012, Timisoara, pp. 217-220.

[15] IEEE 1588-2002, [Online]. Available: http://standards.ieee.org/
findstds/standard/1588-2002.html

[16] PTP daemon, [Online]. Available: http://ptpd.sourceforge.net

[17] Chip Scale Atomic Clock, [Online]. Available:
http://www.microsemi.com/products/timing-synchronization-
systems/embedded-timing-solutions/components/sa-45s-chip-scale-
atomic-clock

[18] W. Jiang, V. K. Prasanna, “Field-Split Parallel Architecture for High
Performance Multi-Match Packet Classification Using FPGAs”, in
Proc. 21th Annual Symposium on Paralellism in Algorithms and
Architectures, 2009, New York, USA, pp. 188-196.

[19] P. Orosz, T. Skopko, M. Varga, “RCTP: A Low Complexity
Transport Protocol for Collecting Measurement Data”,
Infocommunications Journal, 2014 Vol. 6 No. 3, pp 28-36.

